Новости партнёров:



Виды и характеристики трансформаторов

Устройство и работа трансформатора

Трансформатор – это статическое электромагнитное устройство, предуготовленное для преобразования посредством электромагнитной индукции одной системы переменного тока в другую систему переменного тока (без изменения частоты). Трансформатор сконструирован из обмоток и магнитной системы.

Магнитная система трансформатора (магнитопровод) из себя представляет комплект пластин из ферромагнитного материала (из электротехнической стали), собранных в обусловленной геометрической форме. Данная система предназначается для сосредоточения в магнитопроводе магнитного поля. Магнитопроводы трансформаторов мощностью до 1,5 кВ∙А располагают прямоугольной формой, причем соотношение высоты стержня и длины ярма находится в пределах от 1,2 до 2. Производят их из листов электротехнической стали толщиной от 0,35 до 0,5 мм. Из определенного количества витков алюминиевого или медного изолированных проводов намотанных в форме катушки, состоит обмотка трансформатора.

В трансформаторе могут находится две или несколько обмоток. Под обмотками в трехфазном трансформаторе подразумевают совокупность трех фаз, соединенных треугольником или звездой. На момент подключения к источнику переменного тока одну из обмоток (её называют первичной) в этой обмотке возникает ЭДС самоиндукции E1, а в другой (её называют вторичной) – ЭДС индукции Е2.

Если же игнорировать падение напряжения в обмотках трансформатора, значение которого очень мало, то формулы можно записать так: E1 = U1 и E2 = U2

U1 – напряжение на первичной обмотке;

U2 – напряжение на вторичной обмотке.

Нам известно, из науки физики что


w1 – число витков в первичной обмотке;

w2 – число витков во вторичной обмотке.

Отношение для представленного трансформатора – величина постоянная, и называют её коэффициентом трансформации (k). Если , то трансформатор понижающий, если , то – повышающий.

Трансформатор можно применять как для повышения, так и для понижения напряжения.

Путем расчетов касательно опыта можно удостовериться, что если проигнорировать (из-за незначительности по значению) потери энергии в самом трансформаторе, то можно записать:

P1=P2

P1 – мощность тока в первичной обмотке; P2 – мощность тока во вторичной обмотке.

Вследствие соотношение напряжений и силы токов в обмотках трансформатора можно выразить формулой:


В первичной и во вторичной обмотках мощности тока одинаковы лишь при идеальном случае. Практически же на нагревание магнитопровода и обмоток часть электрической энергии бесполезно тратится. В таком случае часто сообщают о потере энергии. Конечно, энергия не теряется, а расходуется напрасно на нагревание трансформатора.

Потерями в меди называют потери энергии в обмотках, которые в свою очередь согласно закону Джоуля – Ленца зависят от электрического сопротивления обмоток и силы тока, проходящего по ним. Принято говорить о мощности потерь в меди – Рм.

При работе трансформатора перемагничивается его сердечник (это явление гистерезиса), на что также потребляется и тратится энергия. Впоследствии индуцируются вихревые токи в сердечнике, тем самым, нагревая его. Трата энергии на потери, перемагничивание сердечника и на нагревание вихревыми токами сердечника (на вихревые токи) имеют названия как потери в стали. Обусловлено сообщать о мощности потерь в стали – Рст. Из-за того, что теряется часть энергии в трансформаторе, мощность тока в первичной обмотке больше мощности тока во вторичной обмотке.

Связь мощности тока во вторичной обмотке касательно мощности тока в первичной обмотке именуют коэффициентом полезного действия трансформатора – КПД трансформатора. КПД трансформатора значительный – примерно 98-99,5%.

Производя замер мощности тока в обмотках или мощности потерь энергии в обмотках и магнитопроводе, тем самым находят КПД трансформатора. Вследствие этого формула для нахождения КПД трансформатора

выглядит так:


Распознают всего два режима работы трансформатора: эта работа под нагрузкой и работа без нагрузки – холостой ход. На момент работы трансформатора, при котором первичная обмотка находится под номинальным напряжением, а вторичная просто разомкнута, то есть мощность и сила тока в ней равны нулю, называют холостым ходом трансформатора. На время холостого хода сила тока в первичной обмотке в десятки раз меньше номинальной. Отчего значительно малы и потери энергии в меди. От того, что напряжение на первичной обмотке номинальное, то на момент холостого хода потери в стали те же самые, как и на время номинального режима работы трансформатора под нагрузкой.

При включении электроприемника в цепь вторичной обмотки, то есть, на момент работы трансформатора под нагрузкой, напряжение на его первичной обмотке остается практически неизменным, а пропорционально изменению силы тока во вторичной обмотке изменяется сила тока в ней. Таким образом, к примеру в увеличении силы тока во вторичной обмотке увеличивается энергия используемая электроприемником, а это значит мощность тоже увеличивается, используемая трансформатором от источника тока, то есть от электрической сети, в которую подключена первичная обмотка трансформатора.

Такое явление поясняют следующим образом: полное значение в сердечнике суммарного магнитного потока – постоянная величина; ток, идущий по вторичной обмотке, образовывает магнитный поток, который в соответствии правилу Ленца сориентирован против магнитного потока, образовываемого током первичной обмотки; например, если возрастет сила тока во вторичной обмотке, то усилится и магнитный поток в ней, а это значит, должен увеличиться и магнитный поток, формируемый током первичной обмотки; последнее может произойти лишь при увеличении силы тока в первичной обмотке.


electrokiber.ru © Все права защищены. При копировании материалов ссылка на сайт обязательна